Angstrom-scale flatness using selective nanoscale etching
نویسندگان
چکیده
The realization of flat surfaces on the angstrom scale is required in advanced devices to avoid loss due to carrier (electron and/or photon) scattering. In this work, we have developed a new surface flattening method that involves near-field etching, where optical near-fields (ONFs) act to dissociate the molecules. ONFs selectively generated at the apex of protrusions on the surface selectively etch the protrusions. To confirm the selective etching of the nanoscale structure, we compared near-field etching using both gas molecules and ions in liquid phase. Using two-dimensional Fourier analysis, we found that near-field etching is an effective way to etch on the scale of less than 10 nm for both wet and dry etching techniques. In addition, near-field dry etching may be effective for the selective etching of nanoscale structures with large mean free path values.
منابع مشابه
Challenges in realizing ultraflat materials surfaces
Ultraflat surface substrates are required to achieve an optimal performance of future optical, electronic, or optoelectronic devices for various applications, because such surfaces reduce the scattering loss of photons, electrons, or both at the surfaces and interfaces. In this paper, we review recent progress toward the realization of ultraflat materials surfaces. First, we review the developm...
متن کاملPreparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy.
Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ∼50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.
متن کاملTemperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching
Friction-induced selective etching provides a convenient and practical way for fabricating protrusive nanostructures. A further understanding of this method is very important for establishing a controllable nanofabrication process. In this study, the effect of etching temperature on the formation of protrusive hillocks and surface properties of the etched silicon surface was investigated. It is...
متن کاملFacile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process.
The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si...
متن کاملMolecular transport through nanoporous silicon nitride membranes produced from self-assembling block copolymers.
To achieve fast and selective molecular filtration, membrane materials must ideally exhibit a thin porous skin and a high density of pores with a narrow size distribution. Here, we report the fabrication of nanoporous silicon nitride membranes (NSiMs) at the full wafer scale using a versatile process combining block copolymer (BCP) self-assembly and conventional photolithography/etching techniq...
متن کامل